Abstract

We analyze third-harmonic generation from high-index dielectric nanoparticles and discuss the basic features and multipolar nature of the parametrically generated electromagnetic fields near the Mie-type optical resonances. By combining both analytical and numerical methods, we study the nonlinear scattering from simple nanoparticle geometries such as spheres and disks in the vicinity of the magnetic dipole resonance. We reveal the approaches for manipulating and directing the resonantly enhanced nonlinear emission with subwavelength all-dielectric structures that can be of a particular interest for novel designs of nonlinear optical antennas and engineering the magnetic optical nonlinear response at nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.