Abstract

In recent years, the nitrogen-vacancy (NV) center in diamonds has been demonstrated to be a high-performance multiphysics sensor, where a lock-in amplifier (LIA) is often adopted to monitor photoluminescence changes around the resonance. It is rather complex when multiple resonant points are utilized to realize a vector or temperature-magnetic joint sensing. In this article, we present a novel scheme to realize multipoint lock-in detection with only a single-channel device. This method is based on a direct digital synthesizer (DDS) and frequency-shift keying (FSK) technique, which is capable of freely hopping frequencies with a maximum of 1.4 GHz bandwidth and encoding an unlimited number of resonant points during the sensing process. We demonstrate this method in experiments and show it would be generally useful in quantum multi-frequency excitation applications, especially in the portable and highly mobile cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call