Abstract

A family of multi-point iterative methods for solving systems of nonlinear equations is described. Some classical methods are included in the mentioned family. Under certain conditions, convergence order is proved to be 2d + 1, where d is the order of the partial derivatives required to be zero in the solution. Moreover, different numerical tests confirm the theoretical results and allow us to compare these variants with Newton’s method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.