Abstract
A macroscopic approach for calculation of electrostatic interactions in proteins, initially developed for solution, was extended to describe isolated multiply-charged protein ions in the gas phase. It was combined with a Monte Carlo algorithm for determination of the most probable protonated sites for a different charge. Several quantities characterizing the behavior of protein ions in vacuum were calculated for nativelike lysozyme and ubiquitin. Among these are the apparent gas-phase basicity for various charge states, as well as the intrinsic basicities and the probabilities of protonation of individual sites. The contributions of the intramolecular solvation term and the peptide dipole-charge interactions to the intrinsic gas-phase basicity of each site were estimated. It was shown that the peptide dipoles may essentially influence the intrinsic gas-phase basicity of individual protonation sites. The approach can be successfully used to probe electrostatic interactions of gas-phase protein ions, provid...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.