Abstract

The oriented attachment of magnetic nanoparticles is recognized as an important pathway in the magnetic-hyperthermia cancer treatment roadmap, thus, understanding the physical origin of their enhanced heating properties is a crucial task for the development of optimized application schemes. Here, we present a detailed theoretical analysis of the hysteresis losses in dipolar-coupled magnetic nanoparticle assemblies as a function of both the geometry and length of the array, and of the orientation of the particles’ magnetic anisotropy. Our results suggest that the chain-like arrangement biomimicking magnetotactic bacteria has the superior heating performance, increasing more than 5 times in comparison with the randomly distributed system when aligned with the magnetic field. The size of the chains and the anisotropy of the particles can be correlated with the applied magnetic field in order to have optimum conditions for heat dissipation. Our experimental calorimetrical measurements performed in aqueous and...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.