Abstract

Conditions equivalent with closure of the range of a multiplier T, defined on a commutative semisimple Banach algebra A, are studied. A main result is that if A is regular then T 2 A {T^2}A is closed if and only if T is a product of an idempotent and an invertible. This has as a consequence that if A is also Tauberian then a multiplier with closed range is injective if and only if it is surjective. Several aspects of Fredholm theory and Kato theory are covered. Applications to group algebras are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.