Abstract

This paper presents M-channel ( $$M=2^{N}$$ , $$N\in \mathbb {N}$$ , $$N\ge 1$$ ) multiplierless lifting-based (ML-) fast X transforms (FXTs), where X $$=$$ F (Fourier), C (cosine), S (sine), and H (Hartley), i.e., FFT, FCT, FST, and FHT, derived from FHT factorization as way of lowering the cost of signal (image) processing. The basic forms of ML-FXTs are described. Then, they are customized for efficient image processing. The customized ML-FFT has a real-valued calculation followed by a complex-valued one. The ML-FCT customization for a block size of 8, which is a typical size for image coding, further reduces computational costs. We produce two customized ML-FCTs for lossy and lossless image coding. Numerical simulations show that ML-FFT and ML-FCTs perform comparably to the conventional methods in spite of having fewer operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.