Abstract
In this paper, we investigate some properties of the \(AP\)-Henstock integral on a compact set and prove that the product of an \(AP\)-Henstock integrable function and a function of bounded variation is \(AP\)-Henstock integrable. Furthermore, we prove that the product of an \(AP\)-Henstock integrable function and a regulated function is also \(AP\)-Henstock integrable. We also define the \(AP\)-Henstock integral on an unbounded interval, investigate some properties, and show similar multiplier properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.