Abstract

In this paper, we study positive periodic solutions to the repulsive singular perturbation Hill equations with impulse effects. It is proved that such a perturbation problem has at least two positive impulsive periodic solutions when the anti-maximum principle holds for the Hill operator and the perturbation is superlinear at infinity. The proof relies on a nonlinear alternative of Leray-Schauder type and on Krasnoselskii fixed point theorem on compression and expansion of cones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.