Abstract
We consider a nonlinear elliptic problem driven by the $p$-Laplacian and depending on a parameter. The right-hand side nonlinearity is concave, (i.e., $p$-sublinear) near the origin. For such problems we prove two multiplicity results, one when the right-hand side nonlinearity is $p$-linear near infinity and the other when it is $p$-superlinear. Both results show that there exists an open bounded interval such that the problem has five nontrivial solutions (two positive, two negative and one nodal), if the parameter is in that interval. We also consider the case when the parameter is in the right end of the interval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.