Abstract

We reconstruct the whole family of self-adjoint Hamiltonians of Ter-Martirosyan—Skornyakov type for a system of two identical fermions coupled with a third particle of different nature through an interaction of zero range. We proceed through an operator-theoretic approach based on the self-adjoint extension theory of Krein, Visik, and Birman. We identify the explicit ‘Krein—Visik-Birman extension parameter’ as an operator on the ‘space of charges’ for this model (the ‘Krein space’) and we come to formulate a sharp conjecture on the dimensionality of its kernel. Based on our conjecture, for which we also discuss an amount of evidence, we explain the emergence of a multiplicity of extensions in a suitable regime of masses and we reproduce for the first time the previous partial constructions obtained by means of an alternative quadratic form approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.