Abstract

BackgroundThe primordial germ cells (PGCs) giving rise to gametes are determined by two different mechanisms in vertebrates. While the germ cell fate in mammals and salamanders is induced by zygotic signals, maternally delivered germ cell determinants specify the PGCs in birds, frogs and teleost fish. Assembly of the germ plasm in the oocyte is organized by the single Buc in zebrafish, named Velo1 in Xenopus, and by Oskar in Drosophila. Secondary loss of oskar in several insect lineages coincides with changes in germline determination strategies, while the presence of buc in mammals suggests functions not associated with germline formation.ResultsTo clarify the evolutionary history of buc we searched for the gene in genomes available from various chordates. No buc sequence was found in lamprey and chordate invertebrates, while the gene was identified in a conserved syntenic region in elephant shark, spotted gar, teleosts, Comoran coelacanth and most tetrapods. Rodents have probably lost the buc gene, while a premature translation stop was found in primates and in Mexican axolotl lacking germ plasm. In contrast, several buc and buc-like (bucL) paralogs were identified in the teleosts examined, including zebrafish, and the tetraploid genome of Atlantic salmon harbors seven buc and bucL genes. Maternal salmon buc1a, buc2a and buc2b mRNAs were abundant in unfertilized eggs together with dnd and vasa mRNAs. Immunostained salmon Buc1a was restricted to cleavage furrows in 4-cell stage embryos similar to a fluorescent zebrafish Buc construct injected in salmon embryos. Salmon Buc1a and Buc2a localized together with DnD, Vasa and Dazl within the Balbiani body of early oocytes.ConclusionsBuc probably originated more than 400 million years ago and might have played an ancestral role in assembling germ plasm. Functional redundancy or subfunctionalization of salmon Buc paralogs in germline formation is suggested by the maternally inherited mRNAs of three salmon buc genes, the localized Buc1a in the cleavage furrows and the distribution of Buc1a and Buc2a in the Balbiani body during oogenesis. The extra-ovarian expression of salmon buc genes and the presence of a second zebrafish bucL gene suggest additional functions not related to germ cell specification.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0809-7) contains supplementary material, which is available to authorized users.

Highlights

  • The primordial germ cells (PGCs) giving rise to gametes are determined by two different mechanisms in vertebrates

  • The germ cell-specific mRNAs and proteins include Dazl, Dead end (Dnd) and Vasa, which are crucial for germline formation [9,10,11,12,13,14,15]

  • The conserved genes are expressed in the PGCs of all vertebrates, but the mRNAs and proteins are found dispersed in mouse, turtle and salamander, while they are localized in the germ plasm within the Balbiani body of zebrafish, Atlantic salmon, Xenopus and chicken [5, 16,17,18,19,20,21]

Read more

Summary

Introduction

The primordial germ cells (PGCs) giving rise to gametes are determined by two different mechanisms in vertebrates. The conserved genes are expressed in the PGCs of all vertebrates, but the mRNAs and proteins are found dispersed in mouse, turtle and salamander, while they are localized in the germ plasm within the Balbiani body of zebrafish, Atlantic salmon, Xenopus and chicken [5, 16,17,18,19,20,21]. This mitochondria-rich organelle is one of the first morphological markers of oocyte polarity, but shows considerable variability in composition, morphology, developmental timing and persistence among metazoans [22]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call