Abstract

In this paper we classify all Schur functions and skew Schur functions that are multiplicity free when expanded in the basis of fundamental quasisymmetric functions, termed F-multiplicity free. Combinatorially, this is equivalent to classifying all skew shapes whose standard Young tableaux have distinct descent sets. We then generalize our setting, and classify all F-multiplicity free quasisymmetric Schur functions with one or two terms in the expansion, or one or two parts in the indexing composition. This identifies composition shapes such that all standard composition tableaux of that shape have distinct descent sets. We conclude by providing such a classification for quasisymmetric Schur function families, giving a classification of Schur functions that are in some sense almost F-multiplicity free.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.