Abstract

The challenge in detection and identification of Special Nuclear Materials (SNM) is to discriminate between the time-correlated neutrons and gamma-rays emitted from SNM and those originating from non-correlated or differently-correlated environmental non-SNM sources. Time-correlated neutron and gamma-ray bursts can be generated by penetrating components of cosmic radiation. The characteristic features or attributes of correlated signatures can be revealed by analyzing the joint probability density functions (JPDFs) of various parameters of neutrons and gamma-rays. Monte Carlo simulations of SNM and cosmic-ray (non-SNM) sources of neutrons and gamma-rays are performed. For both SNM and non-SNM sources, energy-lifetime JPDF of neutrons, energy-lifetime JPDF of gamma-rays, and JPDFs of neutron-gamma-ray multiplicity are evaluated. Mean values, standard deviations, covariance and correlation are estimated. It is found that the number (multiplicity) of neutrons and gamma-rays emitted from an SNM source is moderately correlated (∼0.48). The multiplicity of neutrons and gamma-rays generated by cosmic-ray showers at sea level is only weakly correlated (∼−0.046). The exploitation of neutron-gamma-ray multiplicity correlation in detectors can provide a tool to discriminate non-SNM sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.