Abstract
Abstract In order to study real-world systems, many applied works model them through signed graphs, that is, graphs whose edges are labelled as either positive or negative. Such a graph is considered as structurally balanced when it can be partitioned into a number of modules, such that positive (respectively negative) edges are located inside (respectively in-between) the modules. When it is not the case, authors look for the closest partition to such balance, a problem called Correlation Clustering (CC). Due to the complexity of the CC problem, the standard approach is to find a single optimal partition and stick to it, even if other optimal or high scoring solutions possibly exist. In this work, we study the space of optimal solutions of the CC problem, on a collection of synthetic complete graphs. We show empirically that under certain conditions, there can be many optimal partitions of a signed graph. Some of these are very different and thus provide distinct perspectives on the system, as illustrated on a small real-world graph. This is an important result, as it implies that one may have to find several, if not all, optimal solutions of the CC problem, in order to properly study the considered system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.