Abstract

AbstractIn this paper we study the following nonlinear Schrödinger equation with magnetic field $$\begin{align*} \left(\frac{\varepsilon}{i}\nabla-A(x)\right)^{2}u+V(x)u=f(| u|^{2})u,\quad x\in\mathbb{R}^{2}, \end{align*}$$where $\varepsilon>0$ is a parameter, $V:\mathbb{R}^{2}\rightarrow \mathbb{R}$ and $A: \mathbb{R}^{2}\rightarrow \mathbb{R}^{2}$ are continuous potentials, and $f:\mathbb{R}\rightarrow \mathbb{R}$ has exponential critical growth. Under a local assumption on the potential $V$, by variational methods, penalization technique, and Ljusternik–Schnirelmann theory, we prove multiplicity and concentration of solutions for $\varepsilon $ small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.