Abstract

<p>In this paper, we studied the existence of multiple normalized solutions to the following Kirchhoff type equation:</p><p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{cases} -\left(a\varepsilon^2+b\varepsilon\int_{\mathbb{R}^3}|\nabla u|^2dx\right)\Delta u+V(x)u = \mu u+f(u) & {\rm{in}}\;\mathbb{R}^3, \\ \int_{\mathbb{R}^3}|u|^2dx = m\varepsilon^3 , u\in H^1(\mathbb{R}^3) , \end{cases} \end{equation*} $\end{document} </tex-math></disp-formula></p><p>where $ a $, $ b $, $ m > 0 $, $ \varepsilon $ is a small positive parameter, $ V $ is a nonnegative continuous function, $ f $ is a continuous function with $ L^2 $-subcritical growth and $ \mu\in\mathbb{R} $ will arise as a Lagrange multiplier. Under the suitable assumptions on $ V $ and $ f $, the existence of multiple normalized solutions was obtained by using minimization techniques and the Lusternik-Schnirelmann theory. We pointed out that the number of normalized solutions was related to the topological richness of the set where the potential $ V $ attained its minimum value.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.