Abstract

Multiplicity fluctuations are studied both globaly (in terms of high-order moments) and locally (in terms of small phase-space intervals). The ratio of cumulant factorial to factorial moments of the charged-particle multiplicity distribution shows a quasi-oscillatory behaviour similar to that predicted by the NNLLA of perturbative QCD. However, an analysis of the sub-jet multiplicity distribution at perturbative scales shows that these oscillations cannot be related to the NNLLA prediction. We investigate how it is possible to reproduce the oscillations within the framework of Monte-Carlo models. Furthermore, local multiplicity fluctuations in angular phase-space intervals are compared with Monte-Carlo models and with first-order QCD predictions. While JETSET reproduces the experimental data very well, the predictions of the Double Leading Log Approximations and estimates obtained in Modified Leading Log Approximations deviate significantly from the data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.