Abstract
We develop a theory of multiplicities and mixed multiplicities of filtrations, extending the theory for filtrations of m-primary ideals to arbitrary (not necessarily Noetherian) filtrations. The mixed multiplicities of r filtrations on an analytically unramified local ring R come from the coefficients of a suitable homogeneous polynomial in r variables of degree equal to the dimension of the ring, analogously to the classical case of the mixed multiplicities of m-primary ideals in a local ring. We prove that the Minkowski inequalities hold for arbitrary filtrations. The characterization of equality in the Minkowski inequality for m-primary ideals in a local ring by Teissier, Rees and Sharp and Katz does not extend to arbitrary filtrations, but we show that they are true in a large and important subcategory of filtrations. We define divisorial and bounded filtrations. The filtration of powers of a fixed ideal is a bounded filtration, as is a divisorial filtration. We show that in an excellent local domain, the characterization of equality in the Minkowski equality is characterized by the condition that the integral closures of suitable Rees like algebras are the same, strictly generalizing the theorem of Teissier, Rees and Sharp and Katz. We also prove that a theorem of Rees characterizing the inclusion of ideals with the same multiplicity generalizes to bounded filtrations in excellent local domains. We give a number of other applications, extending classical theorems for ideals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.