Abstract
It has long been known that there is a close connection between stochastic independence of continuous functions on an interval and space-filling curves [9]. In fact any two nonconstant continuous functions on [0, 1] which are independent relative to Lebesgue measure are the coordinate functions of a space filling curve. (The results of Steinhaus [9] have apparently been overlooked in more recent work in this area [3, 5, 6].)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.