Abstract

We introduce a nonlinear modification of the classical Hawkes process allowing inhibitory couplings between units without restrictions. The resulting system of interacting point processes provides a useful mathematical model for recurrent networks of spiking neurons described as Wiener cascades with exponential transfer function. The expected rates of all neurons in the network are approximated by a first-order differential system. We study the stability of the solutions of this equation, and use the new formalism to implement a winner-takes-all network that operates robustly for a wide range of parameters. Finally, we discuss relations with the generalised linear model that is widely used for the analysis of spike trains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call