Abstract
In this work we detail the application of a fast convolution algorithm to compute high-dimensional integrals in the context of multiplicative noise stochastic processes. The algorithm provides a numerical solution to the problem of characterizing conditional probability density functions at arbitrary times, and we apply it successfully to quadratic and piecewise linear diffusion processes. The ability to reproduce statistical features of financial return time series, such as thickness of the tails and scaling properties, makes these processes appealing for option pricing. Since exact analytical results are lacking, we exploit the fast convolution as a numerical method alternative to Monte Carlo simulation both in the objective and risk-neutral settings. In numerical sections we document how fast convolution outperforms Monte Carlo both in speed and efficiency terms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.