Abstract
Physical situations involving multiplicative noise arise generically in cosmology and field theory. In this paper, the focus is first on exact nonlinear Langevin equations, appropriate in a cosmologica setting, for a system with one degree of freedom. The Langevin equations are derived using an appropriate time-dependent generalization of a model due to Zwanzig. These models are then extended to field theories and the generation of multiplicative noise in such a context is discussed. Important issues in both the cosmological and field theoretic cases are the fluctuation-dissipation relations and the relaxation time scale. Of some importance in cosmology is the fact that multiplicative noise can substantially reduce the relaxation time. In the field theoretic context such a noise can lead to a significant enhancement in the nucleation rate of topological defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.