Abstract

We consider simple systems driven multiplicatively by white shot noise, which appear in the modeling of the dynamics of soil nutrients and contaminants. The dynamics of these systems is analyzed in two ways: solving a hierarchy of linear ordinary differential equations for the moments, which gives a time scale of convergence of the stationary probability density function; and characterizing the crossing properties, such as the mean first-passage time and the mean frequency of level crossing. These results are readily applicable to the study of geophysical systems, such as the problem of accumulation of salt in the root zone, i.e., soil salinization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call