Abstract
AbstractThe theory of isogeny estimates for Abelian varieties provides ‘additive bounds’ of the form ‘d is at most B’ for the degrees d of certain isogenies. We investigate whether these can be improved to ‘multiplicative bounds’ of the form ‘d divides B’. We find that in general the answer is no (Theorem 1), but that sometimes the answer is yes (Theorem 2). Further we apply the affirmative result to the study of exceptional primes ℒ in connexion with modular Galois representations coming from elliptic curves: we prove that the additive bounds for ℒ of Masser and Wüstholz (1993) can be improved to multiplicative bounds (Theorem 3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.