Abstract

This paper describes how modern field programmable gate array (FPGA) technology can be used to build practical and efficient multiplicative finite impulse response (MFIR) filters with low-pass, high-pass, band-pass and band-stop characteristics. This paper explains how MFIR structures can be built with or without linear phase characteristics and implemented efficiently on modern FPGA architectures using fixed-point arithmetic without incurring stability problems or limit cycles which commonly occur when using equivalent infinite impulse response structures. These properties have a particular importance for applications such as tunable resonators, narrow band rejectors and linear phase filters which have demanding, narrow transition band requirements. The results presented in this paper indicate that MFIR filters are, for some applications, a viable alternative to existing filter structures when implemented on an FPGA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call