Abstract

AbstractWe prove that multiplicative chaos measures can be constructed from extreme level sets or thick points of the underlying logarithmically correlated field. We develop a method which covers the whole subcritical phase and only requires asymptotics of suitable exponential moments for the field. As an application, we establish that these estimates hold for the logarithm of the absolute value of the characteristic polynomial of a Haar distributed random unitary matrix (CUE), using known asymptotics for Toeplitz determinant with (merging) Fisher–Hartwig singularities. Hence, this proves a conjecture of Fyodorov and Keating concerning the fluctuations of the volume of thick points of the CUE characteristic polynomial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.