Abstract
Pole balancing is a key task for probing the prospective control that organisms must engage in for purposeful action. The temporal structure of pole-balancing behaviors will reflect the on-line operation of control mechanisms needed to maintain an upright posture. In this study, signatures of multifractality are sought and found in time series of the vertical angle of a pole balanced on the fingertip. Comparisons to surrogate time series reveal multiplicative-cascade dynamics and interactivity across scales. In addition, simulations of a pole-balancing model generating on-off intermittency [J. L. Cabrera and J. G. Milton, Phys. Rev. Lett. 89, 158702 (2002)] were analyzed. Evidence of multifractality is also evident in simulations, though comparing simulated and participant series reveals a significantly greater contribution of cross-scale interactivity for the latter. These findings suggest that multiplicative-cascade dynamics are an extension of on-off intermittency and play a role in prospective coordination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.