Abstract

Nonnegative tensor factorization (NTF) and nonnegative Tucker decomposition (NTD) have been widely applied in high-dimensional nonnegative tensor data analysis. This paper focuses on symmetric NTF and symmetric NTD, which are the special cases of NTF and NTD, respectively. By minimizing the Euclidean distance and the generalized KL divergence, the multiplicative updating rules are proposed and the convergence under mild conditions is proved. We also show that if the solution converges based on the multiplicative updating rules, then the limit satisfies the Karush–Kuhn–Tucker optimality conditions. We illustrate the efficiency of these multiplicative updating rules via several numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.