Abstract

AbstractIf V is a system of weights on a completely regular Hausdorff space X and E is alocally convex space, then CV0(X, E) and CVb (X, E) are locally convex spaces of vector-valued continuous functions with topologies generated by seminorms which are weighted analogues of the supremum norm. In this paper we characterise multiplication operators on these spaces induced by scalar-valued and vector-valued mappings. Many examples are presented to illustrate the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.