Abstract

Let R be a commutative ring. An R-module M is called a multiplication module if for each submodule N of M, N = IM for some ideal I of R. An R-module M is called a pm-module, i.e., M is pm, if every prime submodule of M is contained in a unique maximal submodule of M. In this paper the following results are obtained. (1) If R is pm, then any multiplication R-module M is pm. (2) If M is finitely generated, then M is a multiplication module if and only if Spec(M) is a spectral space if and only if Spec(M) = {PM | P ∈ Spec(R) and P ⊇ M ⊥}. (3) If M is a finitely generated multiplication R-module, then: (i) M is pm if and only if Max(M) is a retract of Spec(M) if and only if Spec(M) is normal if and only if M is a weakly Gelfand module; (ii) M is a Gelfand module if and only if Mod(M) is normal. (4) If M is a multiplication R-module, then Spec(M) is normal if and only if Mod(M) is weakly normal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.