Abstract

A spatial representation of number magnitude, aka the mental number line, is considered one of the basic numerical representations. One way to assess it is number line estimation (e.g., positioning 43 on a number line ranging from 0 to 100). Recently, a new unbounded version of the number line estimation task was suggested: without labeled endpoints but a predefined unit, which was argued to provide a purer measure of spatial numerical representations. To further investigate the processes determining estimation performance in the unbounded number line task, we used an adapted version with variable units other than 1 to evaluate influences of (i) the size of a given unit and (ii) multiples of the units as target numbers on participants' estimation pattern. We observed that estimations got faster and more accurate with increasing unit sizes. On the other hand, multiples of a predefined unit were estimated faster, but not more accurately than non-multiples. These results indicate an influence of multiplication fact knowledge on spatial numerical processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call