Abstract

We report on the use of a frequency-modulated continuous-wave technique for multiplexing optical fiber gas sensors. The sensor network is of a ladder topology and is interrogated by a tunable laser. The system performance in terms of detection sensitivity and cross talk between sensors was investigated and found to be limited by coherent mixing between signals from different channels. The system performance can be improved significantly by use of appropriate wavelength modulation-scanning coupled with low-pass filtering. Computer simulation shows that an array of 37 acetylene sensors with a detection accuracy of 2000 parts in 10(6) for each sensor may be realized. A two-sensor acetylene detection system was experimentally demonstrated that had a detection sensitivity of 165 parts in 10(6) for 2.5-cm gas cells (or a minimum detectable absorbance of 2.1 x 10(-4)) and a cross talk of -25 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.