Abstract

It is of significant importance in cancer biology to identify signaling pathways that play key roles in cell fate determination. Dissecting cellular signaling pathways requires the measurement of a large number of signaling proteins. However, tools for simultaneously monitoring multiple signaling pathway components in single living cells remain limited at present. Herein, we describe an approach, termed multiplexed single-cell plasmonic immunosandwich assay (mxscPISA), for simultaneous detection of multiple signaling proteins in individual living cells. This approach enabled simultaneous non-destructive monitoring of multiple (up to five, currently the highest multiplexing capacity in living cells) cytoplasmic and nucleus signaling proteins in individual cells with ultrahigh detection sensitivity. As a proof of principle, the epidermal growth factor receptor (EGFR) pathway, which plays a central role in cell fate determination, was investigated using this approach in this study. We found that there were differential attenuation rate of pro-survival and accumulation rate of pro-death signaling protein of the EGFR pathway in response to EGFR inactivation. These findings implicate that, after EGFR inactivation, a transient imbalance between survival and apoptotic signaling outputs contributed to the final cell fate of death. The mxscPISA approach can be a promising tool to reveal a signaling dynamic pattern at the single-cell level and to identify key components of signaling pathways that contribute to the final cell fate using only a limited number of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.