Abstract

Photonic Doppler Velocimetry (PDV) is routinely employed as a means of measuring surface velocities for shockwave experimentation. Scientists typically collect ∼4 to 12 channels of PDV data and use extrapolation, assumptions, and models to determine the velocities in regions of the experiment that were not observed directly. We have designed, built and applied a new optical velocimetry diagnostic—the Multiplexed Photonic Doppler Velocimeter (MPDV)—for use on shock physics experiments that require a large number (100s) of spatial points to be measured. MPDV expands upon PDV measurement capabilities via frequency and time multiplexing using commercially available products developed for the telecommunications industry. The MPDV uses the heterodyne method to multiplex four data channels in the frequency domain combined with fiber delays to multiplex an additional four-channel dataset in the time domain, all of which are recorded onto the same digitizer input. This means that each digitizer input records data from eight separate spatial points, so that a single 4-input digitizer may record a total of 32 channels of data. Motivation for development of a multiplexed PDV was driven by requirements for an economical, high-fidelity, high channel–count optical velocimetry system. We present a survey of the methods, components, and trade-offs incorporated into this recent development in optical velocimetry.Photonic Doppler Velocimetry (PDV) is routinely employed as a means of measuring surface velocities for shockwave experimentation. Scientists typically collect ∼4 to 12 channels of PDV data and use extrapolation, assumptions, and models to determine the velocities in regions of the experiment that were not observed directly. We have designed, built and applied a new optical velocimetry diagnostic—the Multiplexed Photonic Doppler Velocimeter (MPDV)—for use on shock physics experiments that require a large number (100s) of spatial points to be measured. MPDV expands upon PDV measurement capabilities via frequency and time multiplexing using commercially available products developed for the telecommunications industry. The MPDV uses the heterodyne method to multiplex four data channels in the frequency domain combined with fiber delays to multiplex an additional four-channel dataset in the time domain, all of which are recorded onto the same digitizer input. This means that each digitizer input records data ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call