Abstract

We transfer the frequency of an ultra-stable laser over a cascaded optical link comprising two compensated links of 150 km and a repeater station. Each link passes through two important nodes of the telecommunication network and includes 114 km of Internet fiber simultaneously carrying data traffic, through a dense wavelength division multiplexing scheme. The metrological signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station is working independently without any remote control. The phase noise on the two links is compensated with the usual round-trip technique. The 300-km multiplexed cascaded link shows an Allan deviation of 3×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-15</sup> at one second and 7×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-20</sup> at 20 hours. This work paves the way to a wide dissemination of ultra stable optical clock signals between distant laboratories via the Internet network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.