Abstract
Burn patients are subject to significant acute immune and metabolic dysfunction. Concomitant inhalation injury increases mortality by 20%. In order to identify specific immune and metabolic signaling pathways in burn (B), inhalation (I), and combined burn-inhalation (BI) injury, unbiased nanoString multiplex technology was used to investigate gene expression within peripheral blood mononuclear cells (PBMCs) from burn patients, with and without inhalation injury. PBMCs were collected from 36 injured patients and 12 healthy, non-burned controls within 72 h of injury. mRNA was isolated and hybridized with probes for 1342 genes related to general immunology and cellular metabolism. From these specific gene patterns, specific cellular perturbations and signaling pathways were inferred using robust bioinformatic tools. In both B and BI injuries, elements of mTOR, PPARγ, TLR, and NF-kB signaling pathways were significantly altered within PBMC after injury compared to PBMC from the healthy control group. Using linear regression modeling, (1) DEPTOR, LAMTOR5, PPARγ, and RPTOR significantly correlated with patient BMI; (2) RPTOR significantly correlated with patient length of stay, and (3) MRC1 significantly correlated with the eventual risk of patient mortality. Identification of mediators of this immunometabolic response that can act as biomarkers and/or therapeutic targets could ultimately aid the management of burn patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.