Abstract

Generated by the immune system post-infection or through vaccination, the effectiveness of antibodies against emerging SARS-CoV-2 variants is crucial for protecting individuals from the COVID-19 pandemic. Herein, a platform for the multiplexed evaluation of SARS-CoV-2 neutralizing antibodies against various variants was designed on the basis of near-infrared (NIR) surface enhanced fluorescence by nano-plasmonic gold chip (pGOLD). Antibody level across variants (Wild-type, Alpha, Beta, Delta, Omicron) was confirmed by the sera from recovered-individuals who were unvaccinated and had infected with Wild-type, Delta, Omicron variants. However, the neutralizing activity against Omicron variant was markedly decreased for individuals infected by Wild-type (~ 5.6-fold) and Delta variant (~ 19.1-fold). To the opposite, neutralizing antibody from individuals recovered from Omicron variant infection showed weak binding strength against non-Omicron variants. Antibody evolution over time was studied with individuals 196–530 days post Wild-type infection. Decreasing IgG antibody titer accompanied by increasing IgG binding avidity with elongated post-infection period were observed for the sera from Wild-type recovered-individuals with different post-infection times, suggesting that after the primary infection, a great number of antibodies were generated and then gradually decreased, while the antibody matured over time. By comparing the IgG level of individuals vaccinated for 27–51 days with individual post-infection, we found that ca. 1 month after two doses of vaccination, the antibody level was comparable to that of 500 days post-infection, and vaccination could enhance IgG avidity more efficiently. This work demonstrated a platform for the multiplexed, high-throughput and rapid screening of acquired immunity against SARS-CoV-2 variants, providing a new approach for the analysis of vaccine effectiveness, immunity against emerging variants, and related serological study.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.