Abstract
A novel multiplexed stripping voltammetric immunoassay protocol was designed for the simultaneous detection of multiple biomarkers (CA 125, CA 15-3, and CA 19-9 used as models) using PAMAM dendrimer-metal sulfide quantum dot (QD) nanolabels as distinguishable signal tags and trifunctionalized magnetic beads as an immunosensing probe. The probe was prepared by means of co-immobilization of primary monoclonal anti-CA 125, anti-CA 15-3 and anti-CA 19-9 antibodies on a single magnetic bead. The PAMAM dendrimer-metal sulfide QD nanolabels containing CdS, ZnS and PbS were synthesized by using in situ synthesis method, which were utilized for the labeling of polyclonal rabbit anti-CA 125, anti-CA 15-3 and anti-CA 19-9 detection antibodies, respectively. A sandwich-type immunoassay format was adopted for the simultaneous determination of target biomarkers in a low-binding microtiter plate. The subsequent anodic stripping voltammetric analysis of cadmium, zinc, and lead components released by acid from the corresponding QD nanolabels was conducted at an in situ prepared mercury film electrode based on the difference of peak potentials. Experimental results indicated that the multiplexed immunoassay enabled the simultaneous detection of three cancer biomarkers in a single run with wide dynamic ranges of 0.01–50UmL−1 and detection limits (LODs) of 0.005UmL−1. Intra-assay and inter-assay coefficients of variation (CVs) were less than 7.2% and 10.4%, respectively. No significant differences at the 0.05 significance level were encountered in the analysis of 10 clinical serum specimens between the multiplexed immunoassay and a commercially available enzyme-linked immunosorbent assay (ELISA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.