Abstract

This paper reports the design and ground-based testing of a multiplexed colorimetric solid-phase extraction (MC-SPE) platform for the rapid determination of multiple water quality parameters in a simple set of operational steps. Colorimetric solid-phase extraction (C-SPE) is an analytical platform that combines impregnated colorimetric reagents on a solid-phase extraction membrane and diffuse reflectance spectroscopy to quantify trace analytes in water. In extending C-SPE to MC-SPE, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple syringes have been designed, enabling the simultaneous determination of three different measures of water quality. Separate, single-parameter membranes, placed in a readout cartridge create unique, parameter-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. Performance evaluations of the MC-SPE platform were conducted using sample pH, silver(I), and nickel(II). Determinations of silver(I) (0.05-0.5 ppm) and nickel(II) (1.8-5.0 ppm) follow established C-SPE methods on reversed-phase extraction membranes using 5-(p-dimethylaminobenzylidene)rhodanine and dimethylglyoxime, respectively, as colorimetric reagents. Sample pH (2.5-5.0) is measured using an anion-exchange membrane impregnated with fluorescein. These determinations require approximately 120 s to complete using a total sample volume of 3.0 mL. The extension of MC-SPE to the determination of a greater number of analytes and its potential application to space and earth-bound monitoring needs are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.