Abstract

The capability of transferring target materials especially functionality-reliable biomolecules, into specific locations and with arbitrarily designed patterns are of critical importance for high-throughput disease diagnosis, multiplexing, and drug screening. Herein, we report the simultaneous patterning of two types of biomolecules using the parallel dip-pen nanolithography technology where an array of the atomic force microscope (AFM) tips can be selectively and alternately coated with target biomolecules via a specially designed inkwell array. Moreover, mixing target biomolecules at a proper volumetric ratio with polyethylene glycol dissolved in PBS buffer solution that works as an ink carrier can not only facilitate the smooth transfer of ink materials from the AFM tip to the substrate,it can also help to adjust the ink diffusion constant of different biomolecules to be highly similar so that the multiplexed biofunctional dot and/or line arrays at similar sizes can be reliably generated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.