Abstract

This Letter presents an approach to produce multiplexable optical fiber chemical sensor using an intrinsic Fabry-Perot interferometer (IFPI) array via the femtosecond laser direct writing technique. Using the hydrogen-sensitive palladium (Pd) alloy as a functional sensory material, Pd alloy coated IFPI devices can reproducibly and reversibly measure hydrogen concentrations with a detection limit of 0.25% at room temperature. Seven IFPI sensors were fabricated in one fiber and performed simultaneous temperature and hydrogen measurements at seven different locations. This Letter demonstrates a simple yet effective approach to fabricate multiplexable fiber optical chemical sensors for use in harsh environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call