Abstract

The COVID-19 pandemic has led to an increased demand for mechanical ventilators and concerns of a ventilator shortage. Several groups have advocated for 1 ventilator to ventilate 2 or more patients in the event of such a shortage. However, differences in patient lung mechanics could make sharing a ventilator detrimental to both patients. Our previous study indicated failure to ventilate in 67% of simulations. The safety problems that must be solved include individual control of tidal volume (VT), individual measurement of VT, individualization of PEEP settings, and individual PEEP measurement. The purpose of this study was to evaluate potential solutions developed at our institution. Two separate lung simulators were ventilated with a modified multiplex circuit using pressure control ventilation. Parameters of the lung models used for simulations (resistance and compliance) were evidence-based from published studies. Individual circuit-modification devices were first evaluated for accuracy. Devices were an adjustable flow diverter valve, a prototype dual volume display, a PEEP valve, and a disposable PEEP display. Then the full modified multiplex circuit was assessed by ventilating 6 pairs of simulated patients with different lung models and attempting to equalize ventilation. Ventilation was considered equalized when VT and end-expiratory lung volume were within 10% for each simulation. The adjustable flow diverter valve allowed volume adjustment to 1 patient without affecting the other. The average error of the dual volume display was -17%. The PEEP valves individualized PEEP, but the PEEP gauge error ranged from 17% to 41%. Using the multiplex circuit, ventilation was equalized regardless of differences in resistance or compliance, reversing the "failure modes" of our previous study. The results of this simulation-based study indicate that devices for individual control and display of VT and PEEP are effective in extending the usability and potential patient safety of multiplex ventilation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.