Abstract
A point-of-care HIV-1 genotypic resistance assay that could be performed during a clinic visit would enable care providers to make informed treatment decisions for patients starting therapy or experiencing virologic failure on therapy. The main challenge for such an assay is the genetic variability at and surrounding each drug-resistance mutation (DRM). We analyzed a database of diverse global HIV sequences and used thermodynamic simulations to design an array of surface-bound oligonucleotide probe sets with each set sharing distinct 5' and 3' flanking sequences but having different centrally located nucleotides complementary to six codons at HIV-1 DRM reverse transcriptase position 103: AAA, AAC, AAG, AAT, AGA, and AGC. We then performed invitro experiments using 80-mer oligonucleotides and PCR-amplified DNA from clinical plasma HIV-1 samples and culture supernatants that contained subtype A, B, C, D, CRF01_AE, and CRF02_AG viruses. Multiplexed solid-phase melt curve analysis discriminated perfectly among each of the six reported reverse transcriptase position 103 codons in both 80-mers and clinical samples. The sensitivity and specificity for detecting targets that contained AAC mixed with targets that contained AAA were >98% when AAC was present at a proportion of ≥10%. Multiplexed solid-phase melt curve analysis is a promising approach for developing point-of-care assays to distinguish between different codons in genetically variable regions such as thosesurrounding HIV-1 DRMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.