Abstract
A multiplex RT-nested PCR has been developed to detect and differentiate the closely related prawn viruses, gill-associated virus (GAV) from Australia and yellow head virus (YHV) from Thailand. RT-PCR using primers to conserved sequences in the ORF1b gene amplified a 794 bp region of either GAV or YHV. Nested PCR using a conserved sense primer and either a GAV- or YHV-specific antisense primer to a divergent sequence differentially amplified a 277 bp region of the primary PCR amplicon. Multiplexing the YHV antisense primer with a GAV antisense primer to another divergent sequence allowed the viruses to be distinguished in a single nested PCR. Nested PCR enhanced detection sensitivity between 100- and 1000-fold and GAV or YHV RNA was detectable in ∼10 fg lymphoid organ total RNA. The multiplex RT-nested PCR was also able to co-detect GAV and YHV RNA mixed over a wide range of concentrations to simulate potential dual-infection states. The robustness of the test was examined using RNA samples from Penaeus monodon prawns infected either chronically or acutely with GAV or YHV and collected at different locations in Eastern Australia and Thailand between 1994 and 1998. GAV- (406 bp) or YHV-specific (277 bp) amplicons were differentially generated in all cases, including five YHV RNA samples in which no primary RT-PCR amplicon was detected. Sequence analysis of GAV and YHV PCR amplicons identified minor variations in the regions targeted by the virus-specific antisense primers. However, none occurred at positions that critically affected the PCR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.