Abstract

Although dynamics underlie many biological processes, our ability to robustly and accurately profile time-varying biological signals and regulatory programs remains limited. Here we describe a framework for storing temporal biological information directly in the genomes of a cell population. We developed a "biological tape recorder" in which biological signals trigger intracellular DNA production that is then recorded by the CRISPR-Cas adaptation system. This approach enables stable recording over multiple days and accurate reconstruction of temporal and lineage information by sequencing CRISPR arrays. We further demonstrate a multiplexing strategy to simultaneously record the temporal availability of three metabolites (copper, trehalose, and fucose) in the environment of a cell population over time. This work enables the temporal measurement of dynamic cellular states and environmental changes and suggests new applications for chronicling biological events on a large scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.