Abstract

BackgroundAccurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease.Materials and methodsA total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR), and two rapid diagnostic immuno-chromatographic tests (ICT) in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD) analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated.ResultsQPCR is the most analytically sensitive method (sensitivity 99.41%), followed by CARESTART (sensitivity 88.24%), and BINAXNOW (sensitivity 86.47%) for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R2 = 0.9746) in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/μl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more costly than reference microscopy.DiscussionThese data suggest that multiplex QPCR although more costly confers a significant diagnostic advantage in terms of LOD compared to reference microscopy and ICTs for all four species. Quality assurance of QPCR is essential to the maintenance of proficiency in the clinical laboratory. ICTs showed good concordance between readers however lacked sensitivity for non-falciparum species due to antigenic differences and low parasitemia.ConclusionMultiplex QPCR but not ICTs is an essential adjunct to microscopy in the reference laboratory detection of malaria species specifically due to the superior LOD. ICTs are better suited to the non-reference laboratory where lower specimen volumes challenge microscopy proficiency in the non-endemic setting.

Highlights

  • Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease

  • The 17 samples that were negative by microscopy and positive by quantitative polymerase chain reaction (QPCR) were positive by Immuno-chromatographic tests (ICT)

  • Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R2 = 0.9746) in a clinically relevant dynamic range and retains a Limit of detection (LOD) of 11 ribosomal DNA (rDNA) copies/μl for P. falciparum, which was several log lower than reference microscopy and ICTs

Read more

Summary

Introduction

Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. The protozoan parasite Plasmodium which causes malaria is a vector-borne infectious disease, estimated to infect approximately 350-500 million and kill more than a million people world wide every year [1]. There are five species of the Plasmodium parasite that can infect humans: the most virulent form of the disease is caused by Plasmodium falciparum and Plasmodium knowlesi. Malaria caused by Plasmodium vivax, Plasmodium ovale and Plasmodium malariae, are more chronic disease in humans. The ICTs are useful for identifying P. falciparum infection, but cannot be used to identify non-P. falciparum species infections such as P. vivax, P. ovale, and P. malariae [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call