Abstract

BackgroundMost genetically modified (GM) plants contain a promoter, P35S, from the plant virus, Cauliflower mosaic virus (CaMV), and many have a terminator, TNOS, derived from the bacterium, Agrobacterium tumefaciens. Assays designed to detect GM plants often target the P35S and/or TNOS DNA sequences. However, because the P35S promoter is derived from CaMV, these detection assays can yield false-positives from non-GM plants infected by this naturally-occurring virus.ResultsHere we report the development of an assay designed to distinguish CaMV-infected plants from GM plants in a single multiplexed quantitative PCR (qPCR) reaction. Following initial testing and optimization via PCR and singleplex-to-multiplex qPCR on both plasmid and plant DNA, TaqMan qPCR probes with different fluorescence wavelengths were designed to target actin (a positive-control plant gene), P35S, P3 (a CaMV-specific gene), and TNOS. We tested the specificity of our quadruplex qPCR assay using different DNA extracts from organic watercress and both organic and GM canola, all with and without CaMV infection, and by using commercial and industrial samples. The limit of detection (LOD) of each target was determined to be 1% for actin, 0.001% for P35S, and 0.01% for both P3 and TNOS.ConclusionsThis assay was able to distinguish CaMV-infected plants from GM plants in a single multiplexed qPCR reaction for all samples tested in this study, suggesting that this protocol is broadly applicable and readily transferrable to any interested parties with a qPCR platform.

Highlights

  • Most genetically modified (GM) plants contain a promoter, Cauliflower mosaic virus 35S promoter (P35S), from the plant virus, Cauliflower mosaic virus (CaMV), and many have a terminator, Nopaline synthase terminator (TNOS), derived from the bacterium, Agrobacterium tumefaciens

  • Most of the engineered genetic constructs in GM plants are built with the 35S promoter (P35S) from Cauliflower Mosaic Virus (CaMV) and the NOS terminator (TNOS) derived from the soil-borne bacterium, Agrobacterium tumefaciens

  • TNOS are used in 65.7 and 53.49% of all commercialized GM crops, respectively, and either or both were used in 81.4% of all GM events, indicating that most GM plants can be detected by methods that target P35S and TNOS [2, 3]

Read more

Summary

Introduction

Most genetically modified (GM) plants contain a promoter, P35S, from the plant virus, Cauliflower mosaic virus (CaMV), and many have a terminator, TNOS, derived from the bacterium, Agrobacterium tumefaciens. Because the P35S promoter is derived from CaMV, these detection assays can yield false-positives from non-GM plants infected by this naturally-occurring virus. Most of the engineered genetic constructs in GM plants are built with the 35S promoter (P35S) from Cauliflower Mosaic Virus (CaMV) and the NOS terminator (TNOS) derived from the soil-borne bacterium, Agrobacterium tumefaciens. Towards distinguishing Cauliflower mosaic virus (CaMV) infection from genetic modification (GM) in crop plants: detection assays and biology, management, and food safety of CaMV.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call