Abstract

The aim of the study was to demonstrate the influence of target gene and amplification product length on the performance of fetal gender determination systems using maternal plasma. A total of 40 pairs of plasma DNA samples from pregnant women and genomic DNA samples from maternal blood, amniotic fluid and paternal blood were isolated for gender determination by amplification of the amelogenin gene and 17 Y-chromosome STR loci, using three different commercial kits. The gender of the fetuses was confirmed by cytogenetic analysis or phenotype at birth. Both the AmpFℓSTR-Identifiler amplification kit and the Mini-STR Amplification kit for amelogenin gene detection were reliable in determining fetal gender (92.0% and 96.0%, respectively), but false negatives were present in both systems. AmpFℓSTR-Yfiler was found to be fully reliable as it amplified Y-STR in all cases of pregnancies with male fetuses and thus was 100% correct in determining fetal gender. The results demonstrated that multiple fluorescent PCR for 17 Y-STR loci was more reliable than AMELY gene testing in fetal sex determination with maternal plasma. We also found that the shorter amplification products could improve the performance of fetal gender determination systems.

Highlights

  • Prenatal gender determination is used for women at high risk of serious sex-linked genetic disorders.Traditionally, this is undertaken by invasive testing such as chorionic villus sampling or amniocentesis, both of which carry a small but significant risk of miscarriage and may be harmful for both mother and fetus

  • When both the AmpFlSTR-Identifiler kit and Mini-short tandem repeats (STR) kit were used on samples from mothers bearing female fetuses

  • When the genotyping results obtained from maternal plasma, maternal blood-cell portion and amniotic fluid were compared, AMELY was the only locus that was reliably amplified; autosomal fetal STR loci originating from the father were amplified only sporadically due to the allelic suppression

Read more

Summary

Introduction

Prenatal gender determination is used for women at high risk of serious sex-linked genetic disorders. This is undertaken by invasive testing such as chorionic villus sampling or amniocentesis, both of which carry a small but significant (less than 1%) risk of miscarriage and may be harmful for both mother and fetus. The identification of cell-free fetal DNA in 1997 by Dennis Lo in the maternal circulation has allowed the development of non-invasive prenatal diagnostic testing [1], which permits fetal sex determination without risk to the pregnancy. The identification of Y-chromosome specific DNA sequences in maternal plasma is indicative of a male fetus. False-negative results are the major drawback with noninvasive prenatal fetal sex determination, because there is not enough fetal DNA in the maternal plasma for a 100%

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.