Abstract
A colorimetric biosensor was elaboratively designed for fast, sensitive and multiplex bacterial detection on a single microfluidic chip using immune magnetic nanobeads for specific bacterial separation, immune gold@platinum palladium nanoparticles for specific bacterial labeling, a finger-actuated mixer for efficient immunoreaction and two coaxial rotatable magnetic fields for magnetic nanobead capture (outer one) and magnet-actuated valve control (inner one). First, preloaded bacteria, nanobeads and nanozymes were mixed through a finger actuator to form nanobead-bacteria-nanozyme conjugates, which were captured by the outer magnetic field. After the inner magnetic field was rotated to successively wash the conjugates and push the H2O2-TMB substrate for resuspending these conjugates, colorless TMB was catalyzed into blue TMBox products, followed by color analysis using ImageJ software for bacterial determination. This simple biosensor enabled multiplex Salmonella detection as low as 9 CFU per sample in 45 min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.